DAOrayaki DAO研究奖金池:
资助地址: DAOrayaki.eth
投票进展:DAO Reviewer 2/0 通 过
赏金总量:75 USD
研究种类:NFT
原文作者: Jonathan W., Vincent H., and Yi Sun
创作者:Skyhigh Feng@DAOrayaki.org
审核者:DAoctor, Yofu@DAOrayaki.org
原文: zkPairing: zkSNARKs for Elliptic Curve Pairings

作者:
配对是许多加密协议的核心组成部分。本文我们介绍circom-pairing,一种在 Circom 用于椭圆曲线配对的 zkSNARK 电路的概念验证实现。
简介
基于配对的密码学(Pairing-based cryptography) (PBC)建立在一个叫做椭圆曲线配对(elliptic curve pairing)的数学对象存在的椭圆曲线密码学(elliptic curve cryptography)之上。虽然配对的定义相对复杂,但它们是零知识密码学现代发展的许多加密对象的基础: BLS 数字签名、 KZG 多项式承诺和 zkSNARKs。
由于 ZK 生态系统中的这个关键角色,在 zkSNARKs 中实现配对极大地扩展了可寻址密码构造的范围,并增加了 SNARKs 的反射能力。特别是,我们设想的应用程序的ZK 身份(ZK Identity) ,区块链扩容,和可编程的 SNARKs 。最后的“解锁”可能会带来一个未来,任何人都可以在运行中自由组合和联合不同的 SNARKs 。
由于配对涉及许多复杂的椭圆曲线操作,在 zkSNARK 中实现它们会带来许多挑战。首先,对于非自然域上的椭圆曲线算法,我们必须使用zk-ECDSA 的大整数和 ECC 优化,但是要适应我们的曲线和 BLS12-381的配对涉及到在域扩展上操作的事实。其次,Miller 的计算配对算法Miller's algorithm允许在标准计算模型中进行许多优化,我们将这些优化移植到 zkSNARK 设置中。最后,由于配对计算的复杂性,即使最终优化的电路也可能相当大,这意味着需要一些基础设施的最佳实践来适应 Circom 工具栈。
在这一系列的文章中,我们提出了一个在 BLS12-381曲线上的最优 Ate 配对的概念验证 Circom 实现,以及一个在 BLS 签名验证中的应用实例。然后,我们概述了其他潜在的应用,如递归 SNARK 和多项式承诺验证,我们认为这种方法很容易推广应用。
循环配对
我们实现了循环配对 circom-pairing 代码库,它为 BLS12-381 曲线上的以下操作提供未经审核的 ZK 电路:
● Tate 配对是最简单的椭圆曲线配对之一。该算法满足双线性特性,适用于密码学领域,对椭圆曲线的计算和算法的正确实现起到了很好的检验作用。
● 最佳配对:最佳配对是实践中最常用的配对。计算类似于Tate配对(使用Miller的算法,我们将在以后的文章中讨论) ; 然而,涉及的步骤较少,而每一步的算法更加复杂,最终的结果是一个较短的总计算。
● BLS 签名验证(短公钥) : 签名验证允许检查一个BLS 签名. 给定签名 s,生成元 G,公钥 xG,和哈希 hash ,验证电路转换 hash 到椭圆曲线点 H(m), 使用maptoG2 下面的电路,然后验证 s 确实是由给定的公钥和消息生成的签名。BLS 签名验证涉及到评估两个最优的 Ate 配对来验证这一点 e(s,G) = e(H(m), xG) , e 表示最佳的 Ate 配对
● 散列hash到曲线: maptoG2 的 BLS 签名验证操作通过计算椭圆曲线上的点对。正在签名的消息必须首先散列成一个数值。然后,这个散列值被转换成椭圆曲线上的一个点; 散列到曲线电路执行这种转换。
更详细的文件,我们的电路在这里可用。这些电路没有经过审核,也不打算用作生产级应用的库。
演示
为了说明我们的电路,我们在zkpairing.xyz 实现了一个演示,它允许用户生成任何 BLS 签名(以特定的输入格式)有效性的证明。如果用户没有一个特定的 BLS 签名他们可以指定以太坊信标链上的任何块号,并且演示会将块数据解析为适当的格式,并生成一个验证该验证者签名的证明区块。对于每个证明,我们提供所有的数据-在三个小文件中-任何人都可以用来在自己的计算机上验证证明!
基准
验证 | 优化 | tate配对 | maptoG2 | |
限制 | 19.2M | 11.4M | 24.7M | 2M |
电路编译 | 3.2h | 1.9h | 4.2h | 23m |
见证生成 C + + 编译 | 2h | 1.1h | 2.3h | 9.3m |
见证服务器 | 2.6m | 1m | 2.5m | 33s 33 |
可信安装阶段2密钥生成 | 58m | 32m | 1.6h | 4.5m |
可信设置阶段2的贡献 | 25m | 13.6m | 29m | 2.9m |
证明钥匙大小 | 12G | 6.5G | 15G | 1.2G |
证明密钥验证 | 1.5h | 43m | 2.5h | 6.2m |
证明时间(rapidsnark) | 2m | 52s | 2.1m | 6s |
所有基准测试都运行在32核3.1 GHz、256G RAM、1T 硬盘和400G 交换机(AWS r5.8 xlarge 实例)上。
运行大型电路
请注意,验证和Tate 配对是非常大的电路,因此它们需要特殊的硬件和设置来运行。特别是,必须使用 C++ 生成见证服务器,使用 rapidsnark 进行证明,使用补丁版本的 Node.js而不使用垃圾收集生成密钥。所有这些都必须在具有大容量内存的机器上完成; 我们的设置工作流程在《大电路最佳实践》( Best Practices for Large Circuits )文档中有详细说明。
我们能用 zkPairing 做什么?
因为配对是许多加密协议的核心组成部分,所以用于配对计算的 zkSNARKs 允许我们将以下高级原语放入 SNARK 中:
● BLS 签名验证: Boneh-Lynn-Shacham (BLS)数字签名是一种基于椭圆曲线配对的签名方案。由于能够使用 BLS 有效地计算聚合签名和阈值签名,它目前被用于区块链,如 Etherum 2.0、 ZCash 和 Dfinity 。验证 BLS 签名涉及到一个配对检查,检查两个椭圆曲线配对是否相等,因此通过 zkPairing 直接启用。这解锁了潜在的可伸缩应用程序,比如轻型客户机和桥接的签名聚合。
● 递归 SNARK 验证: 因为 Groth16证明验证只涉及配对检查,所以 SNARK-ing 配对允许 SNARK-ing 整个验证算法,称为递归验证。这使我们能够构建一个 zkSNARK 的 zkSNARK 的... 无限广告,使开发人员能够构建不同的 SNARK 证明,而不是构建一个单一的大型 SNARK 和大大增加可能的 SNARK 的复杂性。我们正在调整我们的电路,以递归 Groth16验证 BN254,并希望在不久的将来发布一个概念证明。
● KZG 多项式承诺验证: KZG 多项式承诺是 PlonK 的基础,PlonK 是具有通用可信设置的新一代 zkSNARK 之一。因为验证 KZG 承诺涉及到一个配对检查,zkSNARK-ing 配对使我们能够验证任何建立在 SNARK 中的 KZG 承诺之上的东西,包括 PlonK 验证本身!
很快就会看到第2部分讨论了 zkPairing 的实现技术!
致谢
该项目是在 ZKxZK Gitcoin 基金的支持下,在0xPARC 的 ZK 身份工作组期间构建的。
我们借鉴并分享了很多与 circom-ecdsa 相关的技术,特别是在大整数和椭圆曲线算法的优化方面。例如,我们使用 xJsnark 的大整数乘法优化。
我们也从最初的创作者 Jordi Baylina 和 snarkjs 的研究中获益匪浅。他教了我们很多关于 circom/snarkJS 工具栈的知识,并分享了很多关于如何有效地构建大型 ZK 电路的见解。
通过 DAO,研究组织和媒体可以打破地域的限制,以社区的方式资助和生产内容。DAOrayaki将会通过DAO的形式,构建一个代表社区意志并由社区控制的功能齐全的去中心化媒体。欢迎通过文末方式提交与DAO、量子计算、星际移民、DA相关的内容,瓜分10000USDC赏金池!欢迎加入DAOrayaki社区,了解去中心化自治组织(DAO),探讨最新话题!
Media:https://media.daorayaki.org
Discord server: https://discord.gg/wNUPmsGsa4
Medium: https://medium.com/@daorayaki
Email: daorayaki@dorafactory.org
Twitter: @daorayaki_
微信助手:DAOrayaki-Media
小宇宙:DAOrayaki

详情请参考:
Dora Factory支持去中心化DAO研究组织DAOrayaki
DAOrayaki |DAOrayaki 开启去中心化治理2.0时代
DAOrayaki |风险投资的范式转移:无限主义基金和无限游戏
DAOrayaki |DAOrayaki dGov 模型:基于Futarchy的正和游戏
更多关于DAO的文章,关注Dorafactory,查看往期文章。